Structural origin of fractional Stokes-Einstein relation in glass-forming liquids

نویسندگان

  • Shaopeng Pan
  • Z. W. Wu
  • W. H. Wang
  • M. Z. Li
  • Limei Xu
چکیده

In many glass-forming liquids, fractional Stokes-Einstein relation (SER) is observed above the glass transition temperature. However, the origin of such phenomenon remains elusive. Using molecular dynamics simulations, we investigate the break- down of SER and the onset of fractional SER in a model of metallic glass-forming liquid. We find that SER breaks down when the size of the largest cluster consisting of trapped atoms starts to increase sharply at which the largest cluster spans half of the simulations box along one direction, and the fractional SER starts to follows when the largest cluster percolates the entire system and forms 3-dimentional network structures. Further analysis based on the percolation theory also confirms that percolation occurs at the onset of the fractional SER. Our results directly link the breakdown of the SER with structure inhomogeneity and onset of the fraction SER with percolation of largest clusters, thus provide a possible picture for the break- down of SER and onset of fractional SER in glass-forming liquids, which is is important for the understanding of the dynamic properties in glass-forming liquids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Appearance of a Fractional Stokes-Einstein Relation in Water and a Structural Interpretation of Its Onset

The Stokes–Einstein relation has long been regarded as one of the hallmarks of transport in liquids. It predicts that the self-diffusion constant D is proportional to (τ/T)−1, where τ is the structural relaxation time and T is the temperature. Here, we present experimental data on water confirming that, below a crossover temperature T× ≈ 290 K, the Stokes– Einstein relation is replaced by a ‘fr...

متن کامل

Fractional Debye-Stokes-Einstein behaviour in an ultraviscous nanocolloid: glycerol and silver nanoparticles.

One of the major features of glass forming ultraviscous liquids is the decoupling between translational and orientational dynamics. This paper presents studies of this phenomenon in glycerol, an accepted molecular glass former, concentrating on the impact of two exogenic factors: high pressures (P) up to the extreme 1.5 GPa and silver (Ag) nanoparticles (NPs). The analysis is focused on the fra...

متن کامل

Is there a fractional breakdown of the Stokes-Einstein relation in Kinetically Constrained Models at low temperature?

We study the motion of a tracer particle injected in facilitated models which are used to model supercooled liquids in the vicinity of the glass transition. We consider the East model, FA1f model and a more general class of non-cooperative models. For East previous works had identified a fractional violation of the Stokes-Einstein relation with a decoupling between diffusion and viscosity of th...

متن کامل

Transport properties of glass-forming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature.

It is becoming common practice to partition glass-forming liquids into two classes based on the dependence of the shear viscosity η on temperature T. In an Arrhenius plot, ln η vs 1/T, a strong liquid shows linear behavior whereas a fragile liquid exhibits an upward curvature [super-Arrhenius (SA) behavior], a situation customarily described by using the Vogel-Fulcher-Tammann law. Here we analy...

متن کامل

Glassy Relaxation and Breakdown of the Stokes-Einstein Rela- tion in the Two Dimensional Lattice Coulomb Gas of Fractional Charges

– We present Monte Carlo simulation results on the equilibrium relaxation of the two dimensional lattice Coulomb gas with fractional charges, which exhibits a close analogy to the primary relaxation of fragile supercooled liquids. Single particle and collective relaxation dynamics show that the Stokes-Einstein relation is violated at low temperatures, which can be characterized by a fractional ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017